|     | Propanoic acid is a carboxylic acid. Its formula is CH <sub>3</sub> –CH <sub>2</sub> –COOH. |                                                                                                                                        |     |  |  |  |
|-----|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| (a) | a) Propanoic acid is the third member of the homologous series of carboxylic acids.         |                                                                                                                                        |     |  |  |  |
|     | (i)                                                                                         | Give the name and structural formula of the fourth member of this series.                                                              |     |  |  |  |
|     |                                                                                             | name                                                                                                                                   |     |  |  |  |
|     |                                                                                             | formula                                                                                                                                | [2] |  |  |  |
|     | (ii)                                                                                        | Members of a homologous series have very similar chemical properties. State <b>three</b> other characteristics of a homologous series. |     |  |  |  |
|     |                                                                                             |                                                                                                                                        |     |  |  |  |
|     |                                                                                             |                                                                                                                                        |     |  |  |  |
|     |                                                                                             |                                                                                                                                        |     |  |  |  |
|     |                                                                                             |                                                                                                                                        | [3] |  |  |  |
| (b) | Ca                                                                                          | boxylic acids can be made by the oxidation of alcohols.                                                                                |     |  |  |  |
|     |                                                                                             |                                                                                                                                        |     |  |  |  |
|     | (i)                                                                                         | Draw the structural formula of the alcohol which can be oxidised to propanoic acid. Show all atoms and bonds.                          |     |  |  |  |
|     | (i)                                                                                         | • •                                                                                                                                    |     |  |  |  |
|     | (i)                                                                                         | • •                                                                                                                                    |     |  |  |  |
|     | (i)                                                                                         | • •                                                                                                                                    |     |  |  |  |
|     | (i)                                                                                         | Show all atoms and bonds.                                                                                                              | [1] |  |  |  |
|     | (i)<br>(ii)                                                                                 | • •                                                                                                                                    | [1] |  |  |  |
|     |                                                                                             | Show all atoms and bonds.                                                                                                              | [1] |  |  |  |
|     |                                                                                             | Show all atoms and bonds.  Name a reagent, other than oxygen, which can oxidise alcohols to carboxylic acids.                          |     |  |  |  |

1

| •   | •                                | ollowing equation<br>s acid are called p | s for some of the propanoates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | reactions of propa                   | anoic acid.                        |                     |
|-----|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|---------------------|
|     | (i) zinc + pro                   | opanoic acid $ ightarrow$ .              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | + hydrogen                         | [1]                 |
|     |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                    |                     |
| (   | ii) calcium +<br>oxide           | propanoic →<br>acid                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | +                                  | <br>[1]             |
| (i  | ii) LiOH + C                     | H <sub>3</sub> CH <sub>2</sub> COOH →    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                    |                                    | [1]                 |
| 1   | to react compl<br>acids. The sam | etely was measu<br>ne volume of acid     | ed to 100 cm <sup>3</sup> of an ared. This experimal was used in each eriment the reaction concentration in mol/dm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nent was repeate<br>h experiment and | d using different the pieces of ma | aqueous<br>agnesium |
|     | Α                                | propanoic                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                   | 5                                  |                     |
|     | В                                | propanoic                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                   | 3                                  | -                   |
|     | С                                | propanoic                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                   | 8                                  |                     |
|     | D                                | hydrochloric                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                   | 1                                  | 1                   |
|     | (i) Why is the                   | rate in experime                         | collision rate between the collision rate betwee | he rate in experim                   | nent <b>A</b> ?                    | [2]                 |
| (ii | ii) Why is the                   | rate in experime                         | nt <b>D</b> faster than th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e rate in experim                    |                                    | [2]                 |
|     |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                    |                     |

| Explain each of the follow | wing in terms of the kinetic p                               | particle theory.                        |                 |
|----------------------------|--------------------------------------------------------------|-----------------------------------------|-----------------|
| (a) The rate of most rea   | actions increases at higher to                               | emperatures.                            |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         | [3]             |
|                            | volume but takes up the sha<br>it does not have a fixed volu | ape of the container. A gas tak<br>ame. | es up the shape |
|                            | liquid                                                       | gas                                     |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         |                 |
|                            |                                                              |                                         | [3]             |
|                            |                                                              |                                         | [Total: 6]      |

2

| 3 | Th  | e ald | cohols form an homologous series.                                                         |
|---|-----|-------|-------------------------------------------------------------------------------------------|
|   | (a) | Giv   | e three characteristics of an homologous series.                                          |
|   |     |       |                                                                                           |
|   |     |       |                                                                                           |
|   |     |       |                                                                                           |
|   |     |       | [3]                                                                                       |
|   | (b) | The   | e following two alcohols are members of the series and they are isomers.                  |
|   |     |       | $CH_3 - CH_2 - CH_2 - CH_2 - OH$ and $(CH_3)_2 CH - CH_2 OH$                              |
|   |     | (i)   | Explain why they are isomers.                                                             |
|   |     |       |                                                                                           |
|   |     |       |                                                                                           |
|   |     |       | [2]                                                                                       |
|   |     | (ii)  | Give the structural formula of another alcohol which is also an isomer of these alcohols. |
|   |     |       |                                                                                           |
|   |     |       |                                                                                           |
|   |     |       |                                                                                           |

[1]

(c) Copper(II) oxide can oxidise butan-1-ol to liquid X whose pH is 4.



(i) Name another reagent which can oxidise butan-1-ol.

.....[1]

(ii) What type of compound is liquid X and what is its formula?

type of compound ......[1]

formula of liquid X

(d) The alcohol ethanol can be made by fermentation. Yeast is added to aqueous glucose.

$$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

Carbon dioxide is given off and the mixture becomes warm as the reaction is exothermic. The graph shows how the rate of reaction varies over several days.



| (i)  | Suggest a method of measuring the rate of this reaction.      |    |
|------|---------------------------------------------------------------|----|
|      |                                                               |    |
| (ii) | Why does the rate increase initially?                         |    |
|      |                                                               |    |
| iii) | Suggest <b>two</b> reasons why the rate eventually decreases. | ין |
|      |                                                               |    |
| iv)  | Why is fermentation carried out in the absence of air?        | [2 |
| ,    | with 13 termentation carried out in the absence of air:       |    |
|      |                                                               | E4 |

[Total: 15]

| 4 | \/anadium | ic a | trancition | alamant |
|---|-----------|------|------------|---------|

| (a) | An atom of the most | common isotope | e of vanadium | can be represe | ented as 51 V |
|-----|---------------------|----------------|---------------|----------------|---------------|

Complete the following table to show the number of protons, electrons and neutrons in each particle.

| particle                                    | number of protons | number of electrons | number of neutrons |
|---------------------------------------------|-------------------|---------------------|--------------------|
| <sup>51</sup> <sub>23</sub> V               |                   |                     |                    |
| <sup>51</sup> <sub>23</sub> V <sup>3+</sup> |                   |                     |                    |
| <sup>50</sup> <sub>23</sub> V               |                   |                     |                    |

|     |      | 20                   |                   |                                           |               |              |
|-----|------|----------------------|-------------------|-------------------------------------------|---------------|--------------|
|     | L    |                      |                   | I                                         |               | [3]          |
| (b) | The  | major use of vana    | adium is to make  | vanadium steel allo                       | ys.           |              |
|     | (i)  | Explain the phras    | e steel alloys.   |                                           |               |              |
|     |      |                      |                   |                                           |               |              |
|     |      |                      |                   |                                           |               | [2]          |
|     | (ii) | State the name a     | nd use of another | steel alloy.                              |               |              |
|     |      | name                 |                   |                                           |               |              |
|     |      | use                  |                   |                                           |               | [2]          |
| (c) | Two  | o of the oxidation s | tates of vanadium | n are +3 and +4.                          |               |              |
|     | (i)  | Write the formula    | of vanadium(III)  | oxide and of vanadi                       | um(IV) oxide. |              |
|     |      | vanadium(III) oxid   | de                |                                           |               |              |
|     |      | vanadium(IV) oxid    | de                |                                           |               | [2]          |
|     | (ii) | ` '                  |                   | andium(IV) oxide is<br>sample of vanadiun | •             | a mixture of |
|     |      |                      |                   |                                           |               |              |
|     |      |                      |                   |                                           |               |              |
|     |      |                      |                   |                                           |               | [3]          |